A supervised learning approach for the robust detection of heart beat in plethysmographic data

Enrico Grisan, Giorgia Cantisani, Giacomo Tarroni, Seung Keun Yoon, Michele Rossi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Citations (Scopus)

Abstract

Wearable devices equipped with photoplethysmography (PPG) sensors are gaining an increased interest in the context of biometric signal monitoring within clinical, e-health and fitness settings. When used in everyday life and during exercise, PPG traces are heavily affected by artifacts originating from motion and from a non constant positioning and contact of the PPG sensor with the skin. Many algorithms have been developed for the estimation of heart-rate from photoplethysmography signals. We remark that they were mainly conceived and tested in controlled settings and, in turn, do not provide robust performance, even during moderate exercise. Only a few of them have been designed for signals acquired at rest and during fitness. However, they provide the required resilience to motion artifacts at the cost of using computationally demanding signal processing tools. At variance with other methods from the literature, we propose a supervised learning approach, where a classifier is trained on a set of labelled data to detect the presence of heart beats at each position of a PPG signal, with only little preprocessing and postprocessing. We show that the results obtained on the TROIKA dataset using our approach are comparable with those shown in the original paper, providing a classification error of 14% in the detection of heart beat positions, that reduces to 2.86% on the heart-rate estimates after the postprocessing step.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5825-5828
Number of pages4
ISBN (Electronic)9781424492718
DOIs
Publication statusPublished - 4 Nov 2015
Externally publishedYes
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Cite this