Abstract
ZnO is an interesting material for photoactive and optoelectronic devices because of the wide range of available nanostructures and advantageous semiconducting properties. However, a significant drawback of ZnO is the low stability in high or low pH solutions. This has limited the development of ZnO core-shell materials for use in Z-scheme systems or photovoltaics, where any secondary phase is produced using chemical solution processing at low or high pH. Here, we show a simple process to produce an organic capping layer of 3-aminopropyltriethoxysilane that can successfully stabilize nanostructured ZnO for processing below pH 1. We demonstrate that this process can be used to produce a ZnO-BiFeO3 (BFO) core-shell structure by a sol-gel process. Using a range of physical and analytical techniques, we show that BFO is highly crystalline and produces a conformal coating with a thickness of 2.5 nm. X-ray photoelectron spectroscopy and X-ray diffraction confirm the phase and expected chemical composition of BFO. Finally we are able to demonstrate that diodes produced using the ZnO-BFO core-shell structure have improved performance with a rectification ratio at ±3 V of 2800 because of the reduction in reverse current typically associated with surface recombination on ZnO. Our process opens a route to producing a range of hitherto prohibited ZnO core-shell structures that may have applications ranging from photovoltaic devices to core-shell photocatalysts.
Original language | English |
---|---|
Pages (from-to) | 152-157 |
Number of pages | 6 |
Journal | ACS Applied Materials and Interfaces |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 5 Jan 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2014 American Chemical Society.
Keywords
- APTES
- BFO
- chemical protection
- nanostructure
- ZnO