TY - GEN
T1 - Data Driven Surrogate Signal Extraction for Dynamic PET Using Selective PCA
AU - Whitehead, Alexander C.
AU - Su, Kuan Hao
AU - Emond, Elise C.
AU - Biguri, Ander
AU - MacHado, Maria
AU - Porter, Joanna C.
AU - Garthwaite, Helen
AU - Wollenweber, Scott D.
AU - McClelland, Jamie R.
AU - Thielemans, Kris
PY - 2022/11/5
Y1 - 2022/11/5
N2 - Respiratory motion correction is beneficial in PET. Methods of motion correction include gated reconstruction, where the acquisition is binned, based on a respiratory trace. To acquire these respiratory traces, an external device, like the Real Time Position Management System, or a data driven method, such as PCA, can be used. Data driven methods have the advantage that they are non-invasive, and can be performed post-acquisition. However, data driven methods have the disadvantage that they are adversely affected by the tracer kinetics of a dynamic acquisition. This work seeks to evaluate several adaptions of the PCA method, through which it can be used with dynamic data. The methods explored in this work include, using a moving window (similar to the KRG method of Schleyer et al. (PMB 2014)), extrapolation of the principal component from later time points to earlier time points, as well as a method to select and combine multiple respiratory components. The respiratory traces acquired, were evaluated on 21 patients, by calculating their correlation with a Real Time Position Management System surrogate signal. The results indicate that all methods produce better surrogate signals than when applying static PCA to dynamic data. Extrapolating a late principal component, produced more promising results than using a moving window, and selecting and combining components held benefits for all methods.
AB - Respiratory motion correction is beneficial in PET. Methods of motion correction include gated reconstruction, where the acquisition is binned, based on a respiratory trace. To acquire these respiratory traces, an external device, like the Real Time Position Management System, or a data driven method, such as PCA, can be used. Data driven methods have the advantage that they are non-invasive, and can be performed post-acquisition. However, data driven methods have the disadvantage that they are adversely affected by the tracer kinetics of a dynamic acquisition. This work seeks to evaluate several adaptions of the PCA method, through which it can be used with dynamic data. The methods explored in this work include, using a moving window (similar to the KRG method of Schleyer et al. (PMB 2014)), extrapolation of the principal component from later time points to earlier time points, as well as a method to select and combine multiple respiratory components. The respiratory traces acquired, were evaluated on 21 patients, by calculating their correlation with a Real Time Position Management System surrogate signal. The results indicate that all methods produce better surrogate signals than when applying static PCA to dynamic data. Extrapolating a late principal component, produced more promising results than using a moving window, and selecting and combining components held benefits for all methods.
U2 - 10.1109/NSS/MIC44845.2022.10399196
DO - 10.1109/NSS/MIC44845.2022.10399196
M3 - Conference contribution
AN - SCOPUS:85185373978
T3 - 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference
BT - 2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detector Conference, IEEE NSS MIC RTSD 2022
Y2 - 5 November 2022 through 12 November 2022
ER -