Design and optimisation of process parameters in an in-line CIGS evaporation pilot system

Prabhakara rao Bobbili, Prabhakara Rao, Hari Upadhyaya

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Substantial efforts have been made globally towards improving Cu(In,Ga)Se2 thin film solar cell efficiencies with several organisations successfully exceeding the 20% barrier on a research level using the three-stage CIGS process, but commercial mass production of the three-stage process has been limited due to the technological difficulties of scaling-up. An attempt has been made to identify these issues by designing and manufacturing an in-line pilot production deposition system for the three-stage CIGS process which is capable of processing 30cm×30cm modules. The optimisation of the process parameters such as source and substrate temperature, deposition uniformity, flux of copper, indium, gallium and selenium and thickness control has been presented in this investigation. A simplistic thickness distribution model of the evaporated films was developed to predict and validate the designed deposition process, which delivers a comparable simulation compared with the experimental data. These experiments also focused on the optimisation of the temperature uniformity across 30cm×30cm area using a specially designed graphite heating system, which is crucial to form the correct α-phase CIGS in the desired time period. A three-dimensional heat transfer model using COMSOL Multiphysics 4.2a software has been developed and validated with the help of experimental data. © 2013 The Authors.
Original languageEnglish
Pages (from-to)159-167
JournalSurface & Coatings Technology
DOIs
Publication statusPublished - 25 Feb 2014

Keywords

  • Uniformity
  • Up-scaling
  • Heat transfer
  • Evaporation
  • CIGS solar cells
  • Thickness

Fingerprint

Dive into the research topics of 'Design and optimisation of process parameters in an in-line CIGS evaporation pilot system'. Together they form a unique fingerprint.

Cite this