Abstract
Transparent conducting oxides have widespread application in modern society but there is a need to move away from the current ‘industry champion’ tin doped indium oxide (In2O3:Sn) due to high costs. Antimony doped tin(IV) oxide (ATO) is an excellent candidate but is limited by its opto-electrical properties. Here, we present a novel and scalable synthetic route to ATO thin films that shows excellent electrical properties. Resistivity measurements showed that at 4 at% doping the lowest value of 4.7 × 10−4 Ω cm was achieved primarily due to a high charge carrier density of 1.2 × 1021 cm−3. Further doping induced an increase in resistivity due to a decrease in both the carrier density and mobility. Ab initio hybrid density functional theory (DFT) calculations show the thermodynamic basis for the tail off of performance beyond a certain doping level, and the appearance of Sb(III) within the doped thin films.
| Original language | English |
|---|---|
| Pages (from-to) | 7257-7266 |
| Journal | Journal of Materials Chemistry C |
| Volume | 6 |
| Issue number | 27 |
| DOIs | |
| Publication status | Published - 19 Jun 2018 |