TY - JOUR
T1 - FAM98A is a novel substrate of PRMT1 required for tumor cell migration, invasion, and colony formation
AU - Mansour, Mohammed
PY - 2015/10/27
Y1 - 2015/10/27
N2 - Protein arginine methylation, which is mediated by a family of protein arginine methyltransferases (PRMTs), is associated with numerous fundamental cellular processes. Accumulating studies have revealed that the expression of multiple PRMTs promotes cancer progression. In this study, we examined the role of PRMT1 in ovarian cancer cells. PRMT1 is expressed in multiple ovarian cancer cells, and the depletion of its expression suppressed colony formation, in vivo proliferation, migration, and invasion. To gain insight into PRMT1-mediated cancer progression, we searched for novel substrates of PRMT1. We found that FAM98A, whose physiological function is unknown, was arginine-methylated by PRMT1. FAM98A is expressed in numerous ovarian cancer cell lines and is important for the malignant characteristics of ovarian cancer cells. Our results indicate the possible role of the PRMT1-FAM98A pathway in cancer progression.
AB - Protein arginine methylation, which is mediated by a family of protein arginine methyltransferases (PRMTs), is associated with numerous fundamental cellular processes. Accumulating studies have revealed that the expression of multiple PRMTs promotes cancer progression. In this study, we examined the role of PRMT1 in ovarian cancer cells. PRMT1 is expressed in multiple ovarian cancer cells, and the depletion of its expression suppressed colony formation, in vivo proliferation, migration, and invasion. To gain insight into PRMT1-mediated cancer progression, we searched for novel substrates of PRMT1. We found that FAM98A, whose physiological function is unknown, was arginine-methylated by PRMT1. FAM98A is expressed in numerous ovarian cancer cell lines and is important for the malignant characteristics of ovarian cancer cells. Our results indicate the possible role of the PRMT1-FAM98A pathway in cancer progression.
U2 - 10.1007/s13277-015-4310-5
DO - 10.1007/s13277-015-4310-5
M3 - Article
SP - 4531
EP - 4539
JO - Tumor Biology
JF - Tumor Biology
ER -