Flexible and Self-Powered Photodetector Arrays Based on All-Inorganic CsPbBr3 Quantum Dots

K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam, M. Wang, A. Ren, K.L. Choy, I.P. Parkin, Z. Guo, J. Wu

Research output: Contribution to journalArticlepeer-review

198 Citations (Scopus)
4 Downloads (Pure)

Abstract

Flexible devices are garnering substantial interest owing to their potential for wearable and portable applications. Here, flexible and self-powered photodetector arrays based on all-inorganic perovskite quantum dots (QDs) are reported. CsBr/KBr-mediated CsPbBr 3 QDs possess improved surface morphology and crystallinity with reduced defect densities, in comparison with the pristine ones. Systematic material characterizations reveal enhanced carrier transport, photoluminescence efficiency, and carrier lifetime of the CsBr/KBr-mediated CsPbBr 3 QDs. Flexible photodetector arrays fabricated with an optimum CsBr/KBr treatment demonstrate a high open-circuit voltage of 1.3 V, responsivity of 10.1 A W −1, specific detectivity of 9.35 × 10 13 Jones, and on/off ratio up to ≈10 4. Particularly, such performance is achieved under the self-powered operation mode. Furthermore, outstanding flexibility and electrical stability with negligible degradation after 1600 bending cycles (up to 60°) are demonstrated. More importantly, the flexible detector arrays exhibit uniform photoresponse distribution, which is of much significance for practical imaging systems, and thus promotes the practical deployment of perovskite products.

Original languageEnglish
Article number2000004
JournalAdvanced Materials
Volume32
Issue number22
DOIs
Publication statusPublished - 1 Jun 2020

Keywords

  • flexible devices
  • perovskites
  • photodetector arrays
  • self-powered devices

Cite this