Abstract
A novel hybrid strategy combining a spiral dynamic algorithm (SDA) and a bacterial foraging algorithm (BFA) is presented in this article. A spiral model is incorporated into the chemotaxis of the BFA algorithm to enhance the capability of exploration and exploitation phases of both SDA and BFA with the aim to improve the fitness accuracy for the SDA and the convergence speed as well as the fitness accuracy for BFA. The proposed algorithm is tested with the Congress on Evolutionary Computation 2013 (CEC2013) benchmark functions, and its performance in terms of accuracy is compared with its predecessor algorithms. Consequently, for solving a complex engineering problem, the proposed algorithm is employed to obtain and optimise the fuzzy logic control parameters for the hub angle tracking of a flexible manipulator system. Analysis of the performance test with the benchmark functions shows that the proposed algorithm outperforms its predecessor algorithms with significant improvements and has a competitive performance compared to other well-known algorithms. In the context of solving a real-world problem, it is shown that the proposed algorithm achieves a faster convergence speed and a more accurate solution. Moreover, the time-domain response of the hub angle shows that the controller optimised by the proposed algorithm tracks the desired system response very well.
Original language | English |
---|---|
Journal | Journal of Low Frequency Noise Vibration and Active Control |
DOIs | |
Publication status | Published - 7 Aug 2021 |
Keywords
- Building and Construction
- Civil and Structural Engineering
- Mechanical Engineering
- Geophysics
- Acoustics and Ultrasonics
- Mechanics of Materials