Abstract
The kinematics of a robot manipulator are described in terms of the mapping connecting its joint space and the 6-dimensional Euclidean group of motions SE(3). The associated Jacobian matrices map into its Lie algebra se(3), the space of twists describing infinitesimal motion of a rigid body. Control methods generally require knowledge of an inverse for the Jacobian. However for an arm with fewer or greater than six actuated joints or at singularities of the kinematic mapping this breaks down. The Moore--Penrose pseudoinverse has frequently been used as a surrogate but is not invariant under change of coordinates. Since the Euclidean Lie algebra carries a pencil of invariant bilinear forms that are indefinite, a family of alternative hyperbolic pseudoinverses is available. Generalised Gram matrices and the classification of screw systems are used to determine conditions for their existence. The existence or otherwise of these pseudoinverses also relates to a classical problem addressed by Sylvester concerning the conditions for a system of lines to be in involution or, equivalently, the corresponding system of generalised forces to be in equilibrium.
Original language | English |
---|---|
Pages (from-to) | 1541-1559 |
Journal | SIAM Journal on Matrix Analysis and Applications |
DOIs | |
Publication status | Published - 19 Dec 2017 |
Externally published | Yes |
Keywords
- manipulator Jacobian
- screw system
- pseudoinverse
- indefinite inner product
- Euclidean group