Abstract
Consideration of reducing energy consumption and improving occupant comfort are crucial in sustainable building designs and retrofitting. In the built environment, fenestration and shading device (F&SD) installations are common strategies applied in buildings to minimize solar heat gains towards reducing cooling and overall energy. The influence of F&SD strategies on building performance is contingent upon their designs; however, existing research does not provide performance trends and distributions of F&SD with different configurations. This study investigated the influence of varied F&SD configurations on the ventilation and energy performance of an office unit in a building in Shanghai using brute-force parametric analysis and Monte Carlo sensitivity analysis. The evaluated strategies included window-facing orientation, window-to-wall ratio, shading device types, number of shadings, shading device depths, and shading tilt angles. The results show that changes in F&SD configurations resulted in reductions in solar gains, winter natural ventilation loss, and summer natural ventilation gains by up to 93.8 %, 80.2 %, and 75.6 %, respectively. For all F&SD configurations investigated, the difference between the maximum and minimum zone temperatures for summer was 1.39 °C and for winter, 1.21 °C. Heating energy demands increased up to 0.75 %; besides, cooling energy reductions were 3.03 % and 2.7 % for horizontal and vertical shading devices respectively. This study’s findings can aid building designers in comprehending the energy and ventilation performance of varied F&SD configurations and provide insights and references for sustainable design processes.
Original language | English |
---|---|
Article number | 112646 |
Pages (from-to) | 112646 |
Journal | Solar Energy |
Volume | 276 |
DOIs | |
Publication status | Published - 7 Jun 2024 |
Keywords
- Fenestration system; Shading devices; Solar heat gains; Ventilation; Building energy performance