Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data

Soumya Rana, Maitreyee Dey, Gianluigi Tiberi, Mohammad Ghavami, Sandra Dudley-mcevoy

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)

Abstract

Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy.
Original languageEnglish
Pages (from-to)10510
JournalScientific Reports
DOIs
Publication statusPublished - 19 Jul 2019

Keywords

  • Machine Learning
  • Microwave Breast Imaging
  • Lesion Detection

Fingerprint

Dive into the research topics of 'Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data'. Together they form a unique fingerprint.

Cite this