Non-equilibrium gas-liquid transition model

Research output: Contribution to conferenceItempeer-review

Abstract

A new rigorous mathematical model for evaporation/condensation, including boiling, has been proposed. A problem of phase transition and in particular evaporation/condensation is one of the most acute problems of modern technology with numerous applications in industry, such as: in refrigeration, distillation in chemical industry. It is very common to use equilibrium evaporation model, which assumes that concentrations of species in the gas phase is always at saturated condition. Such kind of approach can lead to significant errors, resulting in negative concentrations in complex computer simulations. In this work two analytical solution of simplified differential-algebraic system have been obtained. One of them was deduced using assumption that the process is isothermal and gas volume fraction is constant. In the second solution the assumption about gas volume fraction has been removed. The code for numerical solution of differential-algebraic system, using conservative scheme, has been developed. It was designed to solve both systems of equations with boiling and without. Numerical calculations of ammonia-water system with various initial conditions, which correspond to evaporation and/or condensation of both components, have been performed. It has been shown that, although system quickly evolves to quasi equilibrium state (the differences between current and equilibrium concentrations are small) it is necessary to use non-equilibrium evaporation model, to calculate accurately evaporation/condensation rates, and consequently all other dependent variables.
Original languageEnglish
Pages2100029 - 2100030
DOIs
Publication statusPublished - 1 Dec 2007
EventSixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting -
Duration: 12 Jan 2007 → …

Conference

ConferenceSixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting
Period12/01/07 → …

Fingerprint

Dive into the research topics of 'Non-equilibrium gas-liquid transition model'. Together they form a unique fingerprint.

Cite this