TY - JOUR
T1 - Photoelectrochemical water oxidation of GaP1-xSbx with a direct band gap of 1.65 eV for full spectrum solar energy harvesting
AU - Alqahtani, M.
AU - Sathasivam, S.
AU - Chen, L.
AU - Jurczak, P.
AU - Piron, R.
AU - Levallois, C.
AU - Létoublon, A.
AU - Léger, Y.
AU - Boyer-Richard, S.
AU - Bertru, N.
AU - Jancu, J.-M.
AU - Cornet, C.
AU - Wu, J.
AU - Parkin, I.P.
PY - 2019/4/3
Y1 - 2019/4/3
N2 - Hydrogen produced using artificial photosynthesis, i.e. solar splitting of water, is a promising energy alternative to fossil fuels. Efficient solar water splitting demands a suitable band gap to absorb near full spectrum solar energy and a photoelectrode that is stable in strongly alkaline or acidic electrolytes. In this work, we demonstrate for the first time, a perfectly relaxed GaP0.67Sb0.33 monocrystalline alloy grown on a silicon substrate with a direct band gap of 1.65 eV by molecular beam epitaxy (MBE) without any evidence of chemical disorder. Under one Sun illumination, the GaP0.67Sb0.33 photoanode with a 20 nm TiO2 protective layer and 8 nm Ni co-catalyst layer shows a photocurrent density of 4.82 mA cm−2 at 1.23 V and an onset potential of 0.35 V versus the reversible hydrogen electrode (RHE) in 1.0 M KOH (pH = 14) aqueous solution. The photoanode yields an incident-photon-to-current efficiency (IPCE) of 67.1% over the visible range between wavelengths 400 nm to 650 nm. Moreover, the GaP0.67Sb0.33 photoanode was stable over 5 h without degradation of the photocurrent under strong alkaline conditions under continuous illumination at 1 V versus RHE. Importantly, the direct integration of the 1.65 eV GaP0.67 Sb0.33 on 1.1 eV silicon may pave the way for an ideal tandem photoelectrochemical system with a theoretical solar to hydrogen efficiency of 27%.
AB - Hydrogen produced using artificial photosynthesis, i.e. solar splitting of water, is a promising energy alternative to fossil fuels. Efficient solar water splitting demands a suitable band gap to absorb near full spectrum solar energy and a photoelectrode that is stable in strongly alkaline or acidic electrolytes. In this work, we demonstrate for the first time, a perfectly relaxed GaP0.67Sb0.33 monocrystalline alloy grown on a silicon substrate with a direct band gap of 1.65 eV by molecular beam epitaxy (MBE) without any evidence of chemical disorder. Under one Sun illumination, the GaP0.67Sb0.33 photoanode with a 20 nm TiO2 protective layer and 8 nm Ni co-catalyst layer shows a photocurrent density of 4.82 mA cm−2 at 1.23 V and an onset potential of 0.35 V versus the reversible hydrogen electrode (RHE) in 1.0 M KOH (pH = 14) aqueous solution. The photoanode yields an incident-photon-to-current efficiency (IPCE) of 67.1% over the visible range between wavelengths 400 nm to 650 nm. Moreover, the GaP0.67Sb0.33 photoanode was stable over 5 h without degradation of the photocurrent under strong alkaline conditions under continuous illumination at 1 V versus RHE. Importantly, the direct integration of the 1.65 eV GaP0.67 Sb0.33 on 1.1 eV silicon may pave the way for an ideal tandem photoelectrochemical system with a theoretical solar to hydrogen efficiency of 27%.
U2 - 10.1039/c9se00113a
DO - 10.1039/c9se00113a
M3 - Article
SN - 2398-4902
VL - 3
SP - 1720
EP - 1729
JO - Sustainable Energy & Fuels
JF - Sustainable Energy & Fuels
ER -