TY - JOUR
T1 - Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination
AU - Buckeridge, John
PY - 2015/5/18
Y1 - 2015/5/18
N2 - We report that the valence and conduction band energies of TiO2 can be tuned over a 4 eV range by varying the local coordination environments of Ti and O. We examine the electronic structure of eight known polymorphs and align their ionization potential and electron affinity relative to an absolute energy reference, using an accurate multiscale quantum-chemical approach. For applications in photocatalysis, we identify the optimal combination of phases to enhance activity in the visible spectrum. The results provide a coherent explanation for a wide range of phenomena, including the performance of TiO2 as an anode material for Li-ion batteries, allow us to pinpoint hollandite TiO2 as a new candidate transparent conducting oxide, and serve as a guide to improving the efficiency of photo-electrochemical water splitting through polymorph engineering of TiO$_2$.
AB - We report that the valence and conduction band energies of TiO2 can be tuned over a 4 eV range by varying the local coordination environments of Ti and O. We examine the electronic structure of eight known polymorphs and align their ionization potential and electron affinity relative to an absolute energy reference, using an accurate multiscale quantum-chemical approach. For applications in photocatalysis, we identify the optimal combination of phases to enhance activity in the visible spectrum. The results provide a coherent explanation for a wide range of phenomena, including the performance of TiO2 as an anode material for Li-ion batteries, allow us to pinpoint hollandite TiO2 as a new candidate transparent conducting oxide, and serve as a guide to improving the efficiency of photo-electrochemical water splitting through polymorph engineering of TiO$_2$.
U2 - 10.1021/acs.chemmater.5b00230
DO - 10.1021/acs.chemmater.5b00230
M3 - Article
SP - 3844
EP - 3851
JO - Chemistry of Materials
JF - Chemistry of Materials
ER -