Abstract
Calibration is a vital part of ensuring the safety and smooth operation of any industrial robot and this is particularly essential for collaborative robots as any issue pertaining to safety can adversely impact the human operator. Towards this aim, Prognostics and Health Management (PHM) has been widely implemented in the context of collaborative robots to ensure safe and efficient working environments. In this research, as a subset of PHM research, a novel positional health assessment approach based on a Long Short-Term Memory auto-encoder network (LSTMAE) is proposed. An experimental test setup is utilised, wherein the collaborative robot is subject to variations of coordinate system positional error. The operational 3-axis position time-series data of the collaborative robot is collected with the aid of an industrial data acquisition platform utilising influxDB. The experiments show that, with the aid of this approach, manufacturers can assess the positional health of their collaborative robot systems.
Original language | English |
---|---|
Pages | 323-335 |
Number of pages | 13 |
DOIs | |
Publication status | Published - 4 Jan 2024 |
Event | 26th International Conference series on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2023 - Florianópolis, Brazil Duration: 2 Oct 2023 → 4 Oct 2023 |
Conference
Conference | 26th International Conference series on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2023 |
---|---|
Country/Territory | Brazil |
City | Florianópolis |
Period | 2/10/23 → 4/10/23 |
Bibliographical note
Publisher Copyright:© 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Collaborative Robotics; Prognostics and Health Management (PHM); Auto-encoder; LSTM; Machine Learning; Manufacturing Assembly.