Abstract
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) n ≤holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Original language | English |
---|---|
Number of pages | 11 |
Journal | PLoS ONE |
DOIs | |
Publication status | Published - 3 Mar 2016 |
Keywords
- Preconditioning data
- MD Multidisciplinary
- General Science & Technology
- 2D Integer data
- Computing Convex Hull