Programmable Metasurface Based Multicast Systems: Design and Analysis

Yongxu Zhu

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)

Abstract

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper considers a multi-antenna multicast system with programmable metasurface (PMS) based transmitter. Taking into account of the finite-resolution phase shifts of PMSs, a novel beam training approach is proposed, which achieves comparable performance as the exhaustive beam searching method but with much lower time overhead. Then, a closed-form expression for the achievable multicast rate is presented, which is valid for arbitrary system configurations. In addition, for certain asymptotic scenario, simple approximated expressions for the multicase rate are derived. Closed-form solutions are obtained for the optimal power allocation scheme, and it is shown that equal power allocation is optimal when the pilot power or the number of reflecting elements is sufficiently large. However, it is desirable to allocate more power to weaker users when there are a large number of RF chains. The analytical findings indicate that, with large pilot power, the multicast rate is determined by the weakest user. Also, increasing the number of radio frequency (RF) chains or reflecting elements can significantly improve the multicast rate, and as the phase shift number becomes larger, the multicast rate improves first and gradually converges to a limit. Moreover, increasing the number of users would significantly degrade the multicast rate, but this rate loss can be compensated by implementing a large number of reflecting elements.
Original languageEnglish
JournalIEEE Journal on Selected Areas in Communications
DOIs
Publication statusPublished - 8 Jun 2020
Externally publishedYes

Keywords

  • multicast systems
  • Programmable metasurface
  • channel estimation

Fingerprint

Dive into the research topics of 'Programmable Metasurface Based Multicast Systems: Design and Analysis'. Together they form a unique fingerprint.

Cite this