'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure

Lynne Dawkins, Sharon Cox, Hayden Mcrobbie

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)

Abstract

Aims: To compare the effects of i) high versus low nicotine concentration e-liquid, ii) fixed versus adjustable power and iii) the interaction between the two on: a) vaping behaviour, b) subjective effects, c) nicotine intake, and d) exposure to acrolein and formaldehyde in e-cigarette users vaping in their everyday setting. Design: Counterbalanced, repeated measures with four conditions: i) low nicotine (6 mg/mL)/fixed power; ii) low nicotine/adjustable power; iii) high nicotine (18 mg/mL)/fixed power; iv) high nicotine/adjustable power. Setting: London and the South East, England. Participants: Twenty experienced e-cigarette users (recruited between September 2016 and February 2017) vaped ad libitum using an eVic Supreme™ with a ‘Nautilus Aspire’ tank over four weeks (one week per condition). Measurements: Puffing patterns (daily puff number [PN], puff duration [PD], inter-puff interval [IPI]), mL of e-liquid consumed, changes to power (where permitted), and subjective effects (urge to vape, nicotine withdrawal symptoms) were measured in each condition. Nicotine intake was measured via salivary cotinine. 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of the toxicant acrolein, and formate, a metabolite of the carcinogen formaldehyde, were measured in urine. Findings: There was a significant nicotine concentration x power interaction for PD (p<0.01). PD was longer with low nicotine/fixed power compared with i) high nicotine/fixed power (p< 0.001 and ii) low nicotine/adjustable power (p< 0.01). PN and liquid consumed were higher in the low versus high nicotine condition (main effect of nicotine, p<0.05). Urge to vape and withdrawal symptoms were lower, and nicotine intake was higher, in the high nicotine condition (main effects of nicotine: p<0.01). Whilst acrolein levels did not differ, there was a significant nicotine x power interaction for formaldehyde (p<0.05). Conclusions: Use of a lower nicotine concentration e-liquid was may be associated with compensatory behaviour (e.g., higher number and duration of puffs) and increases in negative affect, urge to vape, and formaldehyde exposure. © 2018 The Authors.Addictionpublished by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.
Original languageEnglish
Pages (from-to)1874-1882
JournalAddiction
DOIs
Publication statusPublished - 7 Jun 2018

Keywords

  • Substance Abuse
  • acrolein
  • E-cigarette
  • formaldehyde
  • 17 Psychology And Cognitive Sciences
  • compensatory behaviour
  • subjective effects
  • 11 Medical And Health Sciences
  • puffing patterns
  • nicotine

Fingerprint

Dive into the research topics of ''Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure'. Together they form a unique fingerprint.

Cite this