Abstract
Sluggish kinetics of the multielectron transfer process is still a bottleneck for efficient oxygen evolution reaction (OER) activity, and the reduction of reaction overpotential is crucial to boost reaction kinetics. Herein, a correlation between the OER overpotential and the cobalt-based electrode composition in a “Microparticles-in-Spider Web” (MSW) superstructure electrode is revealed. The overpotential is dramatically decreased first and then slightly increased with the continuous increase ratio of Co/Co 3O 4 in the cobalt-based composite electrode, corresponding to the dynamic change of electrochemically active surface area and charge-transfer resistance with the electrode composition. As a proof-of-concept, the optimized electrode displays a low overpotential of 260 mV at 10.0 mA cm −2 in alkaline conditions with a long-time stability. This electrochemical performance is comparable and even superior to the most currently reported Co-based OER electrocatalysts. The remarkable electrocatalytic activity is attributed to the optimization of the electrochemically active sites and electron transfer in the MSW superstructure. Theoretical calculations identify that the metallic Co and Co 3O 4 surface catalytic sites play a vital role in improving electron transport and reaction Gibbs free energies for reducing overpotential, respectively. A general way of boosting OER kinetics via optimizing the electrode configurations to mitigate reaction overpotential is offered in this study.
Original language | English |
---|---|
Article number | 1907029 |
Journal | Small |
Volume | 16 |
Issue number | 8 |
DOIs | |
Publication status | Published - 27 Jan 2020 |
Keywords
- cobalt-based electrodes
- electrode configurations
- low overpotential
- oxygen evolution reaction
- structure design