Traffic Sign Recognition based on Synthesised Training Data

Christos Chrysoulas

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

To deal with the richness in visual appearance variation found in real-world data, we propose to synthesise training data capturing these differences for traffic sign recognition. The use of synthetic training data, created from road traffic sign templates, allows overcoming the problems of existing traffic sing recognition databases, which are only subject to specific sets of road signs found explicitly in countries or regions. This approach is used for generating a database of synthesised images depicting traffic signs under different view-light conditions and rotations, in order to simulate the complexity of real-world scenarios. With our synthesised data and a robust end-to-end Convolutional Neural Network (CNN), we propose a data-driven, traffic sign recognition system that can achieve not only high recognition accuracy, but also high computational efficiency in both training and recognition processes.
Original languageEnglish
Pages (from-to)19
JournalBig Data and Cognitive Computing
DOIs
Publication statusPublished - 27 Jul 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Traffic Sign Recognition based on Synthesised Training Data'. Together they form a unique fingerprint.

Cite this