TY - JOUR
T1 - Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition
AU - Zhuang, A.
AU - Liao, R.
AU - Lu, Y.
AU - Dixon, S.C.
AU - Jiamprasertboon, A.
AU - Chen, F.
AU - Sathasivam, S.
AU - Parkin, I.P.
AU - Carmalt, C.J.
PY - 2017/11/17
Y1 - 2017/11/17
N2 - Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently <1°. A rigorous sandpaper abrasion test demonstrated retention of superhydrophobic properties and superior robustness therein, while wear, anticorrosion (pH = 1–14, 72 h), and UV testing (365 nm, 3.7 mW/cm2, 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.
AB - Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently <1°. A rigorous sandpaper abrasion test demonstrated retention of superhydrophobic properties and superior robustness therein, while wear, anticorrosion (pH = 1–14, 72 h), and UV testing (365 nm, 3.7 mW/cm2, 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.
U2 - 10.1021/acsami.7b13182
DO - 10.1021/acsami.7b13182
M3 - Article
SN - 1944-8244
VL - 9
SP - 42327
EP - 42335
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 48
ER -