Abstract
This paper combines Deep Reinforcement Learning (DRL) with Meta-learning and proposes a novel approach, named Meta Twin Delayed Deep Deterministic policy gradient (Meta-TD3), to realize the control of Unmanned Aerial Vehicle (UAV), allowing a UAV to quickly track a target in an environment where the motion of a target is uncertain. This approach can be applied to a variety of scenarios, such as wildlife protection, emergency aid, and remote sensing. We consider multi-tasks experience replay buffer to provide data for multi-tasks learning of DRL algorithm, and we combine Meta-learning to develop a multi-task reinforcement learning update method to ensure the generalization capability of reinforcement learning. Compared with the state-of-the-art algorithms, Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic policy gradient (TD3), experimental results show that the Meta-TD3 algorithm has achieved a great improvement in terms of both convergence value and convergence rate. In a UAV target tracking problem, Meta-TD3 only requires a few steps to train to enable a UAV to adapt quickly to a new target movement mode more and maintain a better tracking effectiveness.
Original language | English |
---|---|
Pages (from-to) | 3789 |
Journal | Remote Sensing |
DOIs | |
Publication status | Published - 18 Nov 2020 |
Keywords
- multi-tasks
- Maneuvering target tracking
- Deep reinforcement learning
- UAV
- meta-learning