Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Ultrasound imaging can be used to study tendon movement during muscle contraction to estimate the tendon force-length relationship in vivo. Traditionally, such tendon displacement measurements are made manually (time consuming and subjective). Here we evaluated a Lucas-Kanade-based tracking algorithm with an optic flow extension that accounts for tendon movement characteristics between consecutive frames of an ultrasound image sequence. Eleven subjects performed 12 voluntary isometric plantar flexion contractions on a dynamometer. Simultaneously, the gastrocnemius medialis tendon was visualized via ultrasonography. Tendon displacement was estimated manually and by using two different automatic tracking algorithms. Maximal tendon elongation (manual: 17.9 ± 0.3 mm, automatic: 17.0 ± 0.3 mm) and tendon stiffness (209 ± 4 N/mm, 218 ± 5 N/mm) generated by the developed algorithm correlated with those obtained with the manual method (0.87 ≤ R ≤ 0.91), with no differences between methods. Our results suggest that optical flow methods can potentially be used for automatic estimation of tendon movement during contraction in ultrasound images, which is further improved by adding a penalty function.
Original languageEnglish
Pages (from-to)1689-1700
JournalUltrasound in Medicine and Biology
DOIs
Publication statusPublished - 22 Apr 2016

Keywords

  • Achilles tendon
  • Lucas–Kanade
  • Automatic tracking
  • 1103 Clinical Sciences
  • Voluntary contraction
  • Ultrasound
  • Acoustics
  • Optical flow

Fingerprint

Dive into the research topics of 'Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.'. Together they form a unique fingerprint.

Cite this