TY - GEN
T1 - Vortex formation at the end of the parallel-plate stack in the standing-wave ther-moacoustic device
AU - Shi, Lei
AU - Yu, Zhibin
AU - Jaworski, Artur J.
PY - 2009/7
Y1 - 2009/7
N2 - This paper investigates vortex formation occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Particle Image Velocimetry (PIV) is used to quantify the vortex pattern variations within an acoustic cycle phase-by-phase, especially during the "ejection stage" when the fluid flows out of the stack. By changing the intensity of acoustic excitation and the stack configuration (plate thickness and plate spacing), vortex patterns will vary accordingly. The tested plate thicknesses were 0.5, 1, 2, 3, 4 and 5 mm, while the plate spacing varied from about 1.2 to 10.8 mm. Eight different vortex flow patterns were observed and classified, and these eight different vortex patterns showed nine types of transition processes in the "ejection stage". Five most typical vortex transition processes were studied in detail.
AB - This paper investigates vortex formation occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Particle Image Velocimetry (PIV) is used to quantify the vortex pattern variations within an acoustic cycle phase-by-phase, especially during the "ejection stage" when the fluid flows out of the stack. By changing the intensity of acoustic excitation and the stack configuration (plate thickness and plate spacing), vortex patterns will vary accordingly. The tested plate thicknesses were 0.5, 1, 2, 3, 4 and 5 mm, while the plate spacing varied from about 1.2 to 10.8 mm. Eight different vortex flow patterns were observed and classified, and these eight different vortex patterns showed nine types of transition processes in the "ejection stage". Five most typical vortex transition processes were studied in detail.
UR - http://www.scopus.com/inward/record.url?scp=84871459808&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84871459808
SN - 9781615677368
T3 - 16th International Congress on Sound and Vibration 2009, ICSV 2009
SP - 1877
EP - 1884
BT - 16th International Congress on Sound and Vibration 2009, ICSV 2009
T2 - 16th International Congress on Sound and Vibration 2009, ICSV 2009
Y2 - 5 July 2009 through 9 July 2009
ER -