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Abstract

This paper aims at exploring companies' pro�t maximization in presence of a
hierarchical organization among �rms and when technological renewal processes take
place. The introduction of a hierarchical structure among �rms allows us to describe
the reality of the industrial districts. In this respect, some policies for the management
of the renewal process in the district are derived.
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1 Introduction
The role of technology in �rms is continuously growing, and competitive small as well as
big �rms must adequate their technology in order to survive on the market. An evident
example is about the speed of the need of renewal of technology connected to the computer
science: also small �rms need the use of at least a computer and the use of new software
requires the renewal of hardware. Even jobs based on human skills that improve through
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time, like law matter, can't avoid the retrieval of information through fast computer, fast
database, and fast communication systems. Investments in technology renewal are higher
in the case of industrial plants and in their conversion for supporting new technological
processes. The need of substantial up front investment of capital may force to delay the
technological upgrade.
In this paper we construct a very simple model to merge the analysis of �rms clustering and
hierarchical organization, referring to the case of the industrial districts and the importance
of technological renewal in the industrial management strategies. In particular, we propose
the analysis of the optimal renewal time leading to the maximum pro�t, in the context of a
network of companies.
The aggregated pro�t of the district has been obtained by using as unit measures the growth
rates and the sizes of the companies. Therefore, an analysis of some results on the distribu-
tion of the �rms depending on their size and growth rate is also presented. In particular, the
relationships between the distribution of the �rms and the internal structure of the district is
evidenced. The next section reviews empirical results on the distribution of �rms depend-
ing on their size and growth rate. In section 3, the hierarchical structure of the district is
described. Section 4 and 5 analyze, respectively, the size of the district and the costs of
technological renewal, section 6 is devoted to the analysis of the pro�t of the district. In the
last section some conclusions and suggestions for economic policies are proposed.

2 Distribution of �rms depending on their size and growth rate
The studies about size and growth rate of �rms differ for the hypotheses tested and for the
data sets that were used. Most literature studies analyze data got from Census and COM-
PUSTAT data bases. Census data give more information about small �rms, that are crucial
for the understanding the impact of social dynamics at the individual level. The volume of
sales is used as a proxy for �rm size, and in some studies other fundamental variables like
as total assets, sales and the number of employees are used as a complementary variable so
as to check the validity and robustness of the results.
The discussion is not purely academic exercise. Right skewness implies that the biggest
number of �rms has a size just below the mean size, while there are a few huge, and some
more very small. The detection of the proper distribution allows to explain differences of
reaction of the market to external shocks, like as natural catastrophes, or the impact on some
economy of exogenous economic factors. This kind of study can help both for driving the
best policies for economy development and for detecting the maximum charge of bad events
(taxes, wars, natural catastrophes etc.) that can be beared without a complete crash.
Several researches have been performed about the detection of skew distribution of �rms,
depending on their growth rates. Firms sizes in industrial countries are highly skew, such
that small numbers of large �rms coexist alongside larger numbers of smaller �rms. On
some data set, skewness has been shown to be robust over time [3]. It has even sur-
vived large-scale demographic transitions within work forces and widespread technolog-
ical change. Finer analyses have shown skewness to grow during growing phases of the
economy and to decrease during recessions [12], thus being an indicator of such economic
cycles. A characteristic that emerges is that although the position of individual �rms in a
size distribution does depend on the de�nition of size, the shape of the distribution does not.



The main concern is to select the best �t to data histograms.
The pioneer work in the direction of the analysis of the distribution of the companies w.r.t.
size and growth rate is [13], where Gibrat's law has been formalized. The law of Gibrat
assumes three key hypotheses: �rstly, the growth rate of a company is independent of its
size; secondly, the successive growth rates of a �rm are uncorrelated in time; thirdly, there
is a lack of interaction among companies.
By a mathematical point of view, consider t, u ≥ 0 and let St be the size of a �rm at time t.
For each �rm Gibrat's law states that

St+u = St(1 + gu) (1)

where gu is the rate of growth, and it is assumed to be an i.i.d stochastic process with
bounded distribution and small variance (usually assumed to be Gaussian).
Assume now t = 0. Taking the logarithm of both sides of (1) and solving back recursively,
it is straightforward to obtain

log(Su) =
u∑

i=1

log(1 + gi) + log(S0).

Formula (1) and the related assumptions stated in Gibrat's law have two main consequences:
�rst of all, for u large enough, the growth rate gu = St+u/St − 1 are log-normally dis-
tributed; secondly, if the companies have the same initial size and are born at the same time,
then also the distribution of �rm size is log-normal.
Some econometric analyses support Gibrat's law.
In [15, 16], the authors inquiry the independence between growth rate and size. In [15] it
is shown that the lognormal distribution hypothesis holds for UK �rms larger than eight
employers. Later, the same authors report that the size of the distribution of UK companies
is shown is close to the lognormal, although the hypothesis of lognormality can be rejected
statistically [16]. Other studies report that the �t of the log-normal distribution to size data
is good close to the mean, but it performs less on the tails, and families of functions that
include as a particular case the log-normal and that take into account a power-law decay of
tails in the general case have been developed. The goodness of statistical �t allows for some
compromise: Gibrat's law has been shown to be compatible with power law under further
hypotheses. As an example, in Simon's model [7] Gibrat's law is combined with an entry
process to obtain a Levy distribution for �rm's size.
A different part of the literature on �rms size aims at showing the limits of the Gibrat model,
and new growth rates and �rms size distribution are proposed by �tting data. Amongst the
others, some evidence against Gibrat's assumptions can be found in [18], where it is shown
that large �rms are more diversi�ed and the growth rate �uctuations decreases w.r.t. size.
This result has been con�rmed in [5, 6, 9, 10, 14, 19]. Moreover, it is well established the
presence of interactions among companies.
In a series of recent papers the power law for �rm size and Laplace law for �rms growth
rates is proposed (see [7]). In this respect, let us consider S0 as the size at time 0 and S1

the size at time 1. From (1) the growth rate is g1 = S1
S0
− 1. Using the approximation

log(x + 1) ≈ x we have that

g1 =
S1

S0
− 1 ≈ log

(
S1

S0

)
≈ log(S1)− log(S0). (2)



It can be shown that the logarithm of a Pareto random variable follows an exponential distri-
bution, and that the difference of two exponential random variables obeys a Laplace distri-
bution. The �rst result can be proved considering the monotonic property of the logarithmic
function and the rule of transformation of random variables. Assuming that X follows a
Pareto distribution with parameter α it is possible to derive the probability distribution of
Y = log(X):

Pr(Y ≥ y) = Pr(log(X) ≥ y) = Pr(X ≥ exp(y)) ∝ (exp(y))−α = exp(−αy) (3)

that is an exponential distribution with parameter α [7]. The second result uses more so-
phisticated mathematical methods, and it is not reported here. Due to this relationship, the
Laplace law for �rms growth rate should be a consequence of power law for �rm size and
not succeed from log-normal one, thus invalidating the Gibrat hypotheses. Studies on the
Laplace law for �rms growth rate then give indirectly results on the Pareto law for �rms
sizes. Therefore, literature focuses at most on the Pareto distribution as an alternative to
log-normal distribution for �rms size. In particular, computer aided simulations of eco-
nomic systems show that in the case of log-normally distributed data shocks are absorbed,
whilst in the case of Pareto distribution correlation internal to the system can amplify the
external shocks leading to strong oscillations of the entire system and risking the collapse
[7].
The power law behavior seems to be common also to parameters that involve the most in-
dustrialized countries. The results reported in [8] can be interpreted as the existence of
a signi�cant range of the world GDP distribution where countries share a common, size-
independent average growth rate. Further particular hypotheses like entry and exit of com-
panies from the market give results that contradicts the Gibrat's law. As an example in
[1, 2, 19] the exponential distribution for the growth rate of �rms has been found to hold
for the 20 years 1974-1993 of COMPUSTAT publicy-traded United States manufacturing
�rms, whilst the variance of the growth rate should grow with the size of the �rm. More
speci�cally, the size S0 of the �rm at the time 0 is measured through the sales. Since the
law of proportionate effect implies a multiplicative process for the growth of companies, it
is de�ned s0 = log(S0). Rather than a gaussian, as expected from Gibrat's law, the best �t
procedure provides an exponential distribution:

p(r1 | s0) =
1√

2σ1(s0)
exp

(
−
√

2 | r1 − r̄1(s0) |
σ1(s0)

)
, where r1 = log

(
S1 − S0

S0

)
(4)

and σ1(S0) ∼ S−β
0 , σ1 is the size of the standard deviation of (4). The estimated value of

β is β = 0.20± 0.03 [2], that is similar to β = 0.18± 0.03, obtained when the size of the
�rms is measured by using as a proxy the number of employers [19]. We point out that (4)
can be used for a uniperiodal model, from 0 to t 6= 1. We will prefer this prospective to
conduct our discussion, as we shall see.
To sum up, the presence of right skewness supports both the Gibrat's law and the Pareto
distribution. Particular assumptions like the one of the validity of the detailed balance, that
states the time-reversal symmetry for the growth rate, show that Gibrat's law and Pareto-
Zipf's law hold for �rms bigger than a �xed threshold [11]. This property is not valid in
general [17], but the behavior of biggest companies is important because determines the



most part of economy. Therefore, such kind of analysis is useful for driving economic
policies at the Country level.
Districts constitute small worlds with a prevalence of small sized industries, so policies for
district developments will be different from those based on the common behavior of big
�rms, and need a �ner analysis. In this work, we deal with the analysis of the optimal pro�t
of an industrial district. At this aim, we refer to St as the aggregate size of the district at
time t.

3 A hierarchical organization of �rms
The present section shows a model for a management structure of the district. Such model
depends on parameters that allow to describe the entire range of organizations, from the
complete anarchy of units composing the system to their perfect control. The aim is
twofold: by one side the most suitable parameters for the economic system under obser-
vation are discussed; on the other side this approach allows to consider the variation of
parameters that improve the pro�t. Moreover to enter in managing details opens the way
to the understanding of the process of the spreading of the renewal of technology giving an
insight in the system, instead that considering it as a black box and observing the results
only at the external level.
Let us consider the district to be composed by N �rms. Following the approach outlined
in [2] we model the internal managerial organization of the district through a hierarchical
managing tree. For simplicity of modeling we suppose that the tree has n levels and that
at every level other than the lowest one each node is connected exactly to z units in the
next lowest level. Therefore N = zn. Managers in the hierarchy of �rms share common
production targets, but they also maintain individual freedom in management units. This
implies, that decisions of the head of the hierarchy are propagated through the tree, but fol-
lowed with a probability Π, and disobeyed with probability (1− Π). Reasons of deviation
from the main district policy encompass the entire range of evaluation of projects, from
subjective evaluation of managers, to budget constraint.
This type of system description is very �exible, and the distance between Π and 1/2 pro-
vides a measure of the organization of the district. More precisely, if z = N and Π = 1/2
then there are no levels, and random disobedience, so the system is completely anarchic and
not organized. If z = 1 and Π = 1 (Π = 0) then managers' decisions are systematically
taken for good (disobeyed), and the system is deterministically ordered.
The organization structure of the district mirrors on its size, since the total sales of a district
is given by the sum of the sales of the companies composing it. In this respect, as we shall
see in details in next section, we are interested at examining the amount of district size St

at time t > 0 and at comparing it to the initial district size S0, also by taking into account
the presence of a technological renewal in the economic environment.
Considering the entire district as a unique, composed structure of size S0 means that its
growth rate is expected to be modeled by (4).
Therefore, [2] suggests that a deeper analysis can be made on the contribution given to the
growth rate by each unit composing the district through the decision of the managing or-
ganization. Indeed, parameters Π and z describe the hierarchical structure of organization,
and they can be calibrated in order to achieve composition of management hierarchy that



allows the district to access the same growth rates as it were a unique big �rm. More pre-
cisely, [2] shows that the parameter β related to the variance of growth rate can be written
as follows:

β =

{
− lnΠ/ ln z if Π > z−1/2

1/2 if Π < z−1/2 (5)

The calibration of Π and z allows to calibrate β, in order to reach a �xed economic target.
We stress that (4) and (5) imply that the variance is co-monotone with Π, in accord with the
very agreeable remark that the most the control is direct, the most the growth is uniform.

4 Variation of the size in technological improvement

We denote as ξi the contribution of the size of company i to the total ssize of the district at
time 0. Let

ξ̄ :=
1
N

N∑

i=1

ξi

be the mean size at time 0 of the companies composing the district. The total size of the
district is

S0 =
N∑

i=1

ξi = Nξ̄.

We suppose that the �rms output depends linearly on the time. This assumption allows to
model industrial processes that never stop, even it does not take into account some interest-
ing aspects, like the seasonality properties of some production processes, as it is mandatory
in agricultural sectors. We are conscious of the limits imposed by this restriction, made to
obtain a less cumbersome algebra, and the analysis of a more general �rms output evolution
rule is already in our research agenda.
Furthermore, in our model it is assumed the existence of a date T > 0 where each �rm of
the district must take a position with respect to the adoption of a new technology. We also
suppose that the old technology is abandoned by the district when the new one is adopted,
at time T .
The introduction of a new technology changes naturally the productivity of a district, and
the contribution of �rm i to the size variation of the district is denoted with δi. The change
δi can be either positive or negative. In fact some �rms can become bigger, as an example
due to cost/quality ratio improvement, but this can also mean that some �rms satellite of the
main production could bear some reduction. Therefore, δi ∈ R. The total size of �rm i at
time t is:

ri(t) = ξit1{t≤T} + [ξit + δi(t− T )]1{t>T}, (6)

and the evolution of the size of the district is then

St =

{
S0t, for t ≤ T ;
S0t +

∑N
i=1 δi(t− T ), for t > T . (7)



5 Costs of renewal of technology
In order to model the costs of renewal we follow the approach purposed in [4]. We measure
the size as sales, and denote as C is the district marginal cost for producing a unit of output,
and introduce the parameter 0 < α ≤ 1, that is a measure of the learning rate of the district.
In particular the production costs for each unit of sales, free from renewal of technology,
is given by Cαt. Further, we denote as ρ ∈ [0, 1] a parameter that indicates how well the
marketplace reduces the manifacturing costs. We assume ρ < α, since the technological
environments go faster than the internal learning.
The unitary production costs for each �rm before and after the innovation date T can be
resumed by

k(t) =





Cαt t < T

CρT αt−T t ≥ T
(8)

The total cost of the �rm i at time t will be indicated as ki(t), and it has to take into account
the presence of the technological renewal date T . We write

ki(t) = ξitα
tC1{t≤T} + C[ξit + δi(t− T )]ρT αt−T 1{t>T}. (9)

6 Analysis of the pro�t of the district
This section is devoted to the analysis of the impact of the renewal process on the pro�t
function, with a particular analysis of the hierarchical structure of the district.
Firstly, we �x a hierarchical structure of the district and discuss the behavior of the pro�t as
a function of the technological renewal time. By aggregating and discounting with a factor
γ ∈ (0, 1), we obtain:

Φ(T ) =
∫ +∞

0

N∑

i=1

[ri(t)− ki(t)]γtdt, (10)

where ki and ri are given, respectively, by (9) and (6).
The following result states:

Proposition 1 Fix T̄ ∈ R+. If ργ > e−1, then Φ decreases in [0, T̄ ].

Proof. By (6) and (9), the aggregate pro�t in (10) can be written as

Φ(T ) =
CS0(αγ)T

log(αγ)
·
[
T − 1

log(αγ)

]
·
[
1 +

(
ρ

α

)T
]

+

+S0 ·
[

1
log2(γ)

+
C

log2(αγ)

]
+ γT

[
N∑

i=1

δi

]
·
(

1
log2(γ)

− CρT

log2(αγ)

)
. (11)

A straightforward computation gives that, if ργ > e−1, then it results Φ′(T ) < 0, for
T ∈ [0, T̄ ].
Proposition 1 admits an easy interpretation. If the technological renewal can take place up



to a �xed date T̄ and under a certain condition, that will be discussed below, the best strat-
egy that a district can adopt is to renew its technology as soon as possible. The required
condition to let this result be true involves the discount rate γ and the parameter ρ: substan-
tially, the attitude of the marketplace to reduce the manifacturing costs should be greater
than a threshold depending on the discount rate applied to evaluate the pro�t of the district.
Let us observe now the in�uence of the district structure in pro�t maximization. The hierar-
chical structure of the district is set free to vary within the pro�t function. The growth rate
of the district can be explored by the knowledge of β, that intervenes in the decay of the
variance of rt as function of S0 (see formula (4) and following arguments). Furthermore,
the number β can be estimated by using the parameters Π and z, that describe the structure
of the district (see formula (5)).
To explore this issue, we proceed by performing a simulation analysis of the pro�t function
Φ. Simulations have been made to analyze the dependence of the pro�t Φ as a function of
Π and z. We got the value of the parameters used to calculate the function Φ from empirical
literature. We used γ = 0.97. From [4] we have that ρ < α < 1. We used intermediate
values α = 0.6 and ρ = 0.5. Also the value β = 0.02 was suggested by empirical analyses
[19]. Fixed t > 0, (St − S0)/S0 was calculated through random sampling of rt basing on
(4). The value of Π represents the percentage of obedience/disobedience, so it ranges in
(0, 1]. We included Π = 1 in the analysis as a special case of perfect obedience. The value
of z represents the number of companies connected with each unit at the previous hierarchi-
cal level in the district. In our simulation it ranges from 2 to 10. For each couple of values
of Π and z we calculated β by using (5) and we sampled 100 random variables rt through a
Laplace distribution p(x) = λ/2 ∗ exp(−λ ∗ abs(x)) with λ =

√
2

σt(S0) , σt(S0) ∼ S−β
0 . We

insert rt in the pro�t function and we calculated maxt∈[0,T ]Φ(t).

Figure 1 about here

Figure 1 shows the results of the simulation study. Generally, the pro�t function attains its
maximum values when either Π and z are large. In particular it is shown that, �xed z, the
pro�t function increases as Π increases. Conversely, it is not observed a growing behavior
of the pro�t w.r.t. z when the probability Π assumes small values.
The interpretation of our �ndings is straightforward.

• When either Π and z are large, then the district is star like, and the strategies decided
by the head of the hierarchy are followed by the lowest levels of the tree. In this case,
the district seems to be powerful, well organized and with a strong managerial team.
Therefore, it is reasonable that the pro�t is great, as it appears in our simulations.

• We can compare two districts with an identical connection structure. In this case, our
results show that the bigger is the probability that the lowest level of the hierarchy
will follow managerial decisions, the bigger is the pro�t. This �nding is totally in
agreement with the evidence that the comovement of the subjective choices of the
companies allows to derive good �nancial performance of the entire district.



7 Concluding remarks and suggested policies
The hierarchical framework we propose allows to derive the best strategies to optimize the
pro�t of a district when a technological renewal takes place.
In our model, the leader company proposes a �nancial strategy, but it is followed by the
�rms in the lowest level with a certain probability Π. Moreover, z is a parameter describing
connection level of the district.
We derive some interesting results.

• If the technological environment go fast enough, and the speed of the reduction of the
manufacturing costs by the marketplace depends on the discount rate used to evaluate
the pro�t, then the pro�t of the district is optimized by renewing immediately the
technology (Proposition 1). In this respect, the managers of the districts should obtain
a low discount factor from the �nancial institution in which the pro�t is invested. The
natural policy, that the head of the hierarchy should apply, is a comparison between
the offered discount factors related to the different �nancial institution, choosing the
lowest one.

• The pro�t of a district can be optimized by letting Π become large. In particular, the
maximum is obtained also when the parameter z is large. This means that the man-
agerial team of a district should implement some techniques to let the subordinated
companies follow their supervisor' policies. Simultaneously, the production of the
district should be fragmented in a large number of interconnected companies. These
goals can be achieved involving satellite �rms in a proposed �nancial strategy, and
making an exact distinction of the hierarchical roles in production within the district.
Methods to gain the consensus and rationalize the production system are then the
study of managerial sciences.
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